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We studied the feedforward network proposed by Dandurand et al.
(2010), which maps location-specific letter inputs to location-invariant
word outputs, probing the hidden layer to determine the nature of the
code. Hidden patterns for words were densely distributed, and K-means
clustering on single letter patterns produced evidence that the network
had formed semi-location-invariant letter representations during train-
ing. The possible confound with superseding bigram representations was
ruled out, and linear regressions showed that any word pattern was well
approximated by a linear combination of its constituent letter patterns.
Emulating this code using overlapping holographic representations
(Plate, 1995) uncovered a surprisingly acute and useful correspondence
with the network, stemming from a broken symmetry in the connection
weight matrix and related to the group-invariance theorem (Minsky &
Papert, 1969). These results also explain how the network can reproduce
relative and transposition priming effects found in humans.

1 Introduction

Reading is one of the most complex skills that children have to master. In
languages that use alphabetical orthographies, such as French and English,
the heart of the reading process is orthographic processing: our ability to
encode the identities and positions of individual letters in the letter strings
that form words. Most current models of visual word recognition assume
the existence of some form of location-invariant word-centered prelexical
orthographic code—that is, a scheme that codes for the identity of indi-
vidual letters or combinations of letters smaller than the whole word and
that defines the position of letters in the word while abstracting away from
their location relative to eye fixation. Therefore, much contemporary re-
search on visual word recognition aims to specify the precise nature of this
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location-invariant, word-centered code and how it is activated by retino-
topic feature information. Theorizing in this area is subject to the com-
putational constraints imposed by the transformation of a retinotopic to
a location-invariant code, as well as the constraints imposed by empirical
findings reflecting the flexible nature of the location-invariant code (see
Grainger, 2008, for a review).

In light of this, some psychological models have postulated that the
shift from a location-specific retinotopic orthographic code to a location-
invariant orthographic code is achieved by coding for combinations of
letters in the correct order for both contiguous and noncontiguous letter
sequences. For example, in the models of Grainger and van Heuven (2003)
and Whitney (2001), so-called open bigrams code two-letter combinations in
a position-independent yet ordered, but not necessarily contiguous, fashion.
As a result, the word WITH, for example, is composed of the following
open bigrams: WI, WT, WH, IT, IH, and TH. In this study, we examine
whether such letter combination representations are discovered by a trained
connectionist network.

One prior study has investigated the learning of location-independent
orthographic representations in a connectionist model. Shillcock and Mon-
aghan (2001) trained a feedforward network to map location-specific letters
into a location-independent representation of the same letters. For exam-
ple, the network would learn to associate patterns WITH##, #WITH#, and
##WITH (in which # represents blanks) to the common output WITH coded
as a given letter identity at each of four possible positions (slot-coding).
Shillcock and Monaghan modeled visual hemifields by splitting the input
string at its center, sending these split inputs to two independent processing
streams. Model splitting accounted for edge effects—the superiority effect
of first and last letters of words in reading—in the sense that network er-
ror was lower for exterior letters in the split model but not in a nonsplit
model.

In an adaptation of Shillcock and Monaghan’s modelling strategy, Dan-
durand, Grainger, and Dufau (2010) (hereafter DGD) asked whether a
feedforward network trained to map location-specific letter identities onto
location-invariant word representations would exhibit flexible and location-
invariant orthographic coding. The DGD network, shown in Figure 1, suc-
cessfully simulated two benchmark phenomena observed in skilled readers:
transposed-letter priming—the finding that primes obtained by transposing
two letters in the target give more facilitation than those obtained by re-
placing two letters (Perea & Lupker, 2003a, 2003b; Schoonbaert & Grainger,
2004)—and relative-position priming—primes obtained by removing or in-
serting some letters in the target while maintaining relative letter order are
more effective than unrelated control primes (Grainger, Granier, Farioli, Van
Assche, & Van Heuven, 2006; Van Assche & Grainger, 2006)—suggesting
that the network might have learned to code for contiguous and noncon-
tiguous letter combinations.
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Figure 1: The feedforward network of Dandurand et al. (2010). The network
learns to map location-specific letter strings in the input layer to location-
invariant word units in the output layer through a hidden layer of 91 units.
The training base contains 1179 English four-letter words (one for each unit in
the ouput layer). Inputs consist of slot-coded representations presented at one
of 10 possible locations.

Research building on Minsky and Papert’s group invariance theorem
(Minsky & Papert, 1969) has established some sufficient conditions on a
feedforward network’s connectivity that guarantee location invariance or
any other kind of symmetries (Shawe-Taylor, 1993). Learning algorithms
such as Tanprop (Simard, Victorri, Le Cun, & Denker, 1992) can enforce
these sufficient conditions, and Hinton (1987) showed that backpropaga-
tion alone could achieve satisfactory location invariance. However, like all
other work on location invariance in backpropagation networks (Shillcock
& Monaghan, 2001; Dandurand et al., 2010), Hinton’s study aimed at char-
acterizing network performances rather than network knowledge. On the
other hand, studies that actually probed for network knowledge did not
deal with location-invariant tasks (Shultz & Elman, 1994; Plate, Bert, Grace,
& Band, 2000).

Hence, the question of how location invariance is achieved in back-
propagation networks has been unanswered until now. Addressing this
question in the domain of visual word recognition might contribute to its
broader understanding: Does the code for invariant visual words build
on letters, bigrams, or any kind of letter combination knowledge? Or
did the network settle on an altogether different way to represent letter
strings independent from their locations? Does it represent words any
differently when letter order particularly matters, such as in the case of
anagrams?

After presenting DGD, we report a series of analyses designed to shed
some light on these questions. Section 2 deals with the density and overlap
of word representations. Sections 3 and 4 use standard clustering and re-
gression analyses to ask whether the network has learned letter or bigram
knowledge, respectively. Building on these results, we proceed to emulate
the code with holographic reduced representations (Plate, 1995), and test
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this emulation against the network. Finally the implications for theories of
visual word recognition and invariant pattern recognition are discussed.

1.1 The DGD Network. The DGD network, illustrated in Figure 1, is
a standard multilayer feedforward perceptron network with one hidden
layer. The input, hidden, and output layers consist of 260, 91, and 1179
units, respectively. The input and output layers use localist coding: each
input unit stands for a letter at one of 10 possible locations, whereas each
output unit stands for a word in the McClelland and Rumelhart (1981)
database. The network was trained using backpropagation with momen-
tum. Presenting a letter string at a given location to the network means
switching the corresponding input units to one while the others remain at
zero, and word recognition was granted for an input word when activation
in the corresponding output unit rised above 0.99. Training proceeded until
a sufficiently low target error (SSE) level was reached.

It is known that multilayer perceptron networks such as DGD can
approximate any input-output mapping (Hornik, Stinchcombe, & White,
1989). To do so, they use their intermediate layers as a proxy where input
patterns get translated in a more adequate format, which is then used to
compute the output. Hence, in order to understand the network, a good
starting point is to probe its hidden space. We thus begin by analyzing the
density and overlap of word representations, two important dimensions on
which feedforward networks are known to vary (Plaut & McClelland, 2010).

2 Density and Overlap of Word Representations

In this first analysis, we ask how units activate for any given word repre-
sentation (the density of the code) and how much activity patterns resemble
one another (the overlap of the code).

To calculate densities, all 1179 words in the base were presented cen-
trally (at locations 4–7 e.g., %%%TIME%%%) to the network. The resulting
activity patterns were plotted in the histogram of Figure 2 (left), which also
shows the density of the anagram subgroup for comparison. Distances were
computed for 130 anagrams and 130 nonanagrams (the anagram group fea-
tured only one word from each set of anagrams) and are presented in
Figure 2 (right). Rather than using cosine as a similarity measure, we used
the Euclidean distances between hidden patterns on the grounds that this
does not suppress information about vector lengths, which might be of sig-
nificance to the network.1 Note that because hidden vectors have dimension
91 and take values between 0 and 1, the maximum possible distance be-
tween two patterns is 9.54 (the square root of 91).

1The Euclidean distance between vectors x and y is given by ‖x − y‖2 = [(x1 − y1)2 +
. . . + (xn − yn)2]

1
2 .
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Figure 2: (Left) Density distributions for anagrams (black) and for all words
(gray). (Right) Distance distributions for anagrams (black) and nonanagrams
(white).

We found that words were densely distributed (mean = 0.604), ana-
grams slightly less so (mean = 0.596). Nonanagrams had the average
overlap expected from independent and identically distributed (i.i.d.)
gaussian vectors (mean = 4.86), and anagrams overlapped slightly less
(mean = 4.79). Extending the overlap analysis to all words in the DGD
lexicon, a population of 694,431 distances (not shown), we found a distance
distribution similar to the nonanagram group. This distribution was uni-
modal, with a mean of 4.88, a low standard deviation of 0.53, and a negative
skew (−0.77). Consequently the median was slightly higher than the mean,
at 4.95. The bulk of distances (94%) were superior to 4.

2.1 Conclusions from the Preliminary Analysis. These basic statistics
show that word patterns are densely distributed and follow a gaussian
law centered close to the middle of the activity range. Patterns are not
confined in the same region of hidden space, and their average distance
deviates only slightly from a gaussian distribution. The density distribution
of anagrams is more widespread, and they also overlap less. All in all,
this suggests that words can be distinguished between efficiently on the
basis of their hidden patterns only, hence minimizing the role played by
hidden-to-output connections and supporting our choice to focus on the
input-to-hidden set of weights.

Because we must analyze dense and overlapping representations of
words with many exemplars, a natural choice is to use cluster analysis. Our
underlying assumption will be that if patterns cluster along a given dimen-
sion, this means the network has learned something (has some knowledge)
about this dimension. Also because it appears that anagrams are treated
differently from other words, we will systematically compare anagrams to
nonanagrams.



256 T. Hannagan, F. Dandurand, and J. Grainger

Table 1: k-Mean Clustering on Hidden Activation Patterns Evoked by Single
Letter Inputs.

Letter Cluster Size Majority Alpha Error Beta Error Error Fitness Letter Frequency

A 9 100% 0 1 1 .395 9.05%
B 10 100 0 0 0 .476 2.65
C 9 100 0 1 1 .442 2.97
D 10 100 0 0 0 .431 4.13
E 10 100 0 0 0 .395 11.20
F 10 100 0 0 0 .362 2.16
G 10 100 0 0 0 .402 2.16
H 10 100 0 0 0 .564 3.14
I 9 100 0 1 1 .493 5.45
J 7 100 0 3 3 .633 0.38
K 10 100 0 0 0 .466 2.82
L 10 100 0 0 0 .456 7.78
M 10 100 0 0 0 .414 3.12
N 10 100 0 0 0 .410 5.07
O 10 100 0 0 0 .370 7.23
P 10 100 0 0 0 .440 3.77
Q 21 48 11 0 11 .179 0.04
R 10 100 0 0 0 .429 5.81
S 10 100 0 0 0 .362 5.68
T 10 100 0 0 0 .439 5.75
U 8 100 0 2 2 .469 3.63
V 9 100 0 1 1 .387 1.00
W 10 100 0 0 0 .388 2.50
X 9 100 0 1 1 .409 0.32
Y 10 100 0 0 0 .466 1.72
Z 9 100 0 1 1 .456 0.47

Notes: The majority column shows the number of exemplars of the best-represented
letter in the cluster. An exemplar that was assigned to cluster Y, when it should have been
assigned to cluster X, counts as a beta error for X and an alpha error for Y. The global error
score is the sum of alpha and beta errors. The reported letter frequencies are collapsed
over all position in-string.

3 Letter Analysis

Having established that word representations are densely distributed with
average overlap, we proceed to ask whether in order to represent words,
the network uses some knowledge pertaining to single letters. To do so, we
exposed the network to single letter inputs at each of the 10 possible loca-
tions and collected the resulting hidden-layer activities. We then performed
a k-mean clustering procedure with 26 clusters on these 260 activation pat-
terns.

Results are presented in Table 1. We found a one-to-one mapping be-
tween clusters and letters, in the sense that the k-mean algorithm uncov-
ered 26 clusters, each showing a majority of exemplars from the same letter.
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Therefore, we will simply describe clusters by giving their sizes as well as
the extent of the majority achieved by its dominant letter. We also define a
cluster as exact if it has size 10 and a majority of 100%.

Clusters had an average size of 10 items (SD = 2.36) and an average
letter majority of 98%. The most ambiguous cluster was cluster Q, with a
majority of only 48% but 11 misclassified exemplars (3 J exemplars and 8
exemplars coming from separate clusters, either in first or last position).
There were 17 exact clusters, 3 of them being vowels, so that the clustering
success for vowels was 50%, and 75% for consonants.

We also computed silhouette fitness scores for all clusters (see the ap-
pendix). Fitness and errors were anticorrelated (R = −0.47)—exact clusters
having better fitness, and conversely. Indeed cluster Q, which had the most
errors, showed the worst fitness score (f(Q) = 0.179). However, the anticor-
relation was not perfect, as exemplified by cluster J (f(J ) = 0.633), which
achieved the best fitness score but the second worst in terms of errors. This
situation appears mostly to reflect the high sensitivity of fitness scores to al-
pha errors. Indeed low-fitness cluster Q produced 11 alpha errors, whereas
high-fitness cluster J had none.

Comparing fitness and error scores to letter frequencies in the DGD
database (last column in Table 1), we found that letter frequency anticor-
related weakly with errors (ρ = −0.36) and not with fitness (ρ = −0.05).
These correlations did not improve much when letter position frequencies
were considered or when one further distinguished between types of errors.
We also found that anagrams were related with errors: looking for letters
that were never seen in anagrams (j, q, x, and z), or remained at the same
position in these anagrams (y), we found that these coincided precisely with
the most poorly defined clusters in terms of errors.

The existence of a natural classification, a one-to-one mapping between
letters and clusters, is also apparent from simple inspection of the distances
between all 260 letter exemplars, shown in Figure 3 (left). As we can see in
this letter distance matrix, patterns evoked by a given letter input are sim-
ilar to one another regardless of the position of this input (white diagonal
squares), and not so much similar to any other exemplars (dark gray nondi-
agonal squares). The light gray lines and columns for letters Q and J outline
the proximity of these letters to all others, explaining the classification errors
made in their respective clusters.

Figure 3 (right) focuses on the distances between patterns produced by
the same letter seen at different locations. These distances are collapsed
for all letters, producing a symmetrical 10 × 10 location distance matrix.
This figure reveals two facts about hidden patterns: both proximity
and centrality of locations make patterns more similar. Indeed, letter
inputs presented at outer positions evoke hidden patterns that are more
segregated than those coming from inner input positions. This impact of
centrality is visible in the lighter gray regions around central locations. At
the same time, distances between patterns increase as the gap between their
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Figure 3: (Left) Distance matrix between letter exemplars across all clusters.
(Right) Distances within a letter category, averaged over all categories. Axes
show the letter location in the input array. White = small distances. Black =
large distances.

corresponding letter locations widens. This is reflected in the light-to-dark
gradient as one recedes from the white diagonal. Proximity and centrality
factors are thus both visible as gradients of gray going in orthogonal
directions (resp. along the first and second diagonals). Moreover, the
predominance of proximity over centrality is apparent from the much
stronger gradient along the first diagonal.

The centrality effect can be readily attributed to differences in letter
exposure during training, as illustrated in Figure 4. Because the input layer
is not circularly connected (i.e., it is an array with a first and a last location),
during training fewer letter exemplars are seen at the edges than at the
center. Letter location frequency is in fact an inverse U-shaped function of
location (square-marked curve in Figure 4). It is known that in backpropa-
gation networks, frequent or early seen items come to “catch the weights”
(Smith, Cottrell, & Anderson, 2001; Ellis & Lambon-Ralph, 2000), which
in our case produces an increase in the average input-to-hidden weights
across letters as one moves toward central locations. As a consequence, this
inverse U-shaped function is also reflected in the length of letter patterns
(the circle-marked curve in Figure 4). When averaged over all letter vectors,
inner vectors tend to be longer than outer vectors (the triangle-marked
curve in Figure 4).

3.1 Conclusions from Letter Analysis. In summary, this analysis
showed that exemplars of the same letter tend to cluster well together
regardless of location in the input array. Cluster fitness is correlated with
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Figure 4: Average lengths of hidden letter vectors (circles), letter location fre-
quencies (squares), and connection weights (triangles) plotted against the loca-
tion of letter input.

errors, especially beta errors (when the exemplar does not conform to clus-
ter majority). Letters that were never seen in anagrams or remained at the
same position in these anagrams are precisely those for which we have
cluster errors. Letter clusters have an internal structure: they show both
a centrality and a proximity effect. The (relatively weak) centrality effect
observed within clusters appears to be related to unequal exposure during
training, which has an impact on weight strengths and, consequently, on
hidden vector lengths.

These results allow us to conclude that the network has learned about
letter identities, although any given letter at two distinct locations can still be
distinguished. We will refer to these letter representations as semi-location-
invariant. However, it might still be that the network has extracted other
regularities from the training base, such as some knowledge about letter
combinations. A natural letter combination candidate to be testing is the
open bigram (Grainger & Van Heuven, 2003; Whitney & Berndt, 1999), and
the next section asks whether some knowledge pertaining to these entities
could indeed be present in the network.

4 Bigram Analysis

In this section we conduct three analyses to determine whether the
network has encoded information about bigrams: combinations of two
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letters that are position independent yet ordered, but not necessarily
contiguous.

4.1 Cluster Analysis. We first perform a clustering analysis. If the net-
work has learned bigram knowledge, we would expect the clusters for
bigrams that are present in the training base to differ significantly in fitness
from those absent from it.

We chose 24 bigrams and divided them along three dimensions: (1)
bigrams had either been seen or not during training, (2) they consisted of
either repeated or mixed letters, and (3) they either contained consonants
only or contained some vowels.

Bigrams in the unseen condition had a frequency of zero in the training
corpus, and to limit the risk of confounds, neither had their transpositions
been seen (or they had the lowest possible frequency when this could not
be helped). The condition with two different vowels was not available
because it did not match this criterion. Whenever possible, bigrams in the
seen condition were constructed from the unseen condition by replacing one
letter so as to minimize structural differences while maximizing frequency
differences.2

We presented a given bigram with one of three gaps (AB, A− B, A− −B,
bigger gaps were proscribed by the four-letter strings in DGD) at each of
the possible locations in the input layer (resp. 9, 8, and 7 locations) used in
DGD (simulation 2.3.1), and collected the activation patterns evoked in the
hidden layer.

We then collapsed all activity patterns into two groups of 12 bigram
classes each, making sure that each group had an equal number of vowel
and consonants, mixed and repeated, and seen and unseen bigrams. The
division in two groups was required to avoid interference across bigrams.
In this way, no two bigrams of the same group shared a common letter.
Finally, the (9 + 8 + 7) × 12 = 288 hidden patterns corresponding to all bi-
gram exemplars in each group were submitted to a k-means procedure with
12 classes.

4.2 Results. The results of the two k-mean clusterings are reported in
Table 2. The first thing to notice is that all clusters were perfectly identified;
no errors were made. The fact that bigram clusters were better defined than
the letter clusters from the previous analysis is a consequence of the former
having half as many clusters as each of the latter. In consequence, Table 2
reports only fitness scores, along with bigram frequencies.

2A consequence of maximizing bigram frequency differences between groups is that
related bigrams in each conditions had large gaps in letter frequencies. An alternative
setup in which letter frequency differences are kept minimal is also possible but reduces
the bigram frequency contrast. The setup we described was chosen because analysis 2
showed that letter frequency had little or no impact on cluster fitness scores.
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Table 2: K -Mean Cluster Analysis Results for Bigram Groups 1 and 2.

Unseen Seen

Repeated Fitness Frequency Mixed Fitness Frequency

Bigram group 1
Vowels UU 0.556 0.0 AK 0.575 40
Vowels YY 0.616 0.0 ES 0.526 43
Vowels II 0.589 0.0 OT 0.531 46
No vowels JJ 0.570 0.0 DR 0.522 16
No vowels VV 0.511 0.0 HN 0.640 18
No vowels WW 0.545 0.0 PL 0.585 24

Seen Unseen

Repeated Fitness Frequency Mixed Fitness Frequency

Bigram group 2
Vowels OO 0.536 42 UV 0.428 0.0
Vowels AA 0.498 12 IX 0.576 0.0
Vowels EE 0.525 51 YQ 0.568 0.0
No vowels LL 0.555 44 DZ 0.509 0.0
No vowels SS 0.508 18 HJ 0.585 0.0
No vowels TT 0.567 13 PF 0.517 0.0

As Table 2 suggests, fitness scores were similar in all conditions. Indeed,
an analysis of variance did not reveal any main effect of training at the
0.05 level (F (1, 12) = 0.0, p = 0.99), nor did it show an effect of presence
of vowel (F (1, 12) = 0.35, p = 0.56), or of repetition (F (1, 12) = 0.0, p =
0.33). Furthermore, none of the interactions was significant at the 0.05 level.
Finally, frequency did not correlate with fitness scores (R = −0.03), and the
correlation did not much improve when it was restricted to seen bigrams
(R = −0.11)

Within bigram clusters, patterns had the same organization in terms of
proximity previously found for letters: exemplars presented at close loca-
tions produced similar patterns. There was no sign of any influence of gap
between constituent letters, which is compatible with the noncontiguous
characteristic of bigrams.

In sum, this analysis failed to find any clear and direct evidence of bi-
gram knowledge. Although bigrams clustered together just as letters did
and showed a similar internal organization, there was no difference be-
tween seen and unseen bigrams in terms of fitness scores. We can think
of two conflicting explanations for this result. One possibility is that the
network could have extracted bigram information from the training envi-
ronment and might generalize from this to unseen bigrams.3 Alternatively,
the network might not have any bigram knowledge, and the observed

3We thank one anonymous reviewer for pointing this out to us.
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bigram clusters would be simple combinations of letter clusters that reflect
knowledge about individual letters. In order to try and decide between
these two alternatives, we proceed to a second analysis.

4.3 Bigram Index. Many different properties are associated with the
notion of a bigram: it must activate for ordered combinations of letter pairs
that can possibly be noncontiguous and may occur at different locations.4

Although these properties may vary across schemes, all agree in asserting
that a given bigram entity should be more active when the input letters
are shifted by one location than when they are reversed altogether.5 When
representations are densely distributed, the prediction is that a bigram
pattern should be more distant to the pattern elicited by its transposed
version than by its shifted version. In fact, because the resulting distances are
graded measures and because this property is the only one that is genuinely
common to all bigram schemes, it provides a good basis to quantify the
extent to which the network has learned bigram representations.

To any bigram, we can associate two quantities S and T , which may be
interpreted as the sensitivity to order and location, respectively. We define
S in the following way:

Sab = d(a5b6, a6b7)
d(a5b6, x6 y7)

.

Hence S is the distance between the hidden patterns obtained when
bigram AB is presented centrally (positions 5 and 6) and when it is shifted
by one location (positions 6 and 7), divided by the distance to a different
shifted bigram XY.

Likewise, T is defined as

Tab = d(a5b6, a6b5)
d(a5b6, x5 y6)

.

T is the distance between hidden patterns for centrally presented and
transposed (positions 6 and 5) bigrams AB, divided by the distance to a
different bigram pattern XY. S and T indices were computed based on
the Euclidean distance and cosine similarities6 for 50 discriminant bigrams
(D > 0) and 50 nondiscriminant bigrams (D = 0) matched for frequency.7

4With the exception of overlapping open bigrams (Grainger et al., 2006), where un-
ordered letter pairs are activated to a lesser degree.

5We thank Carol Whitney for suggesting this to us as a test.
6The cosine distance between X and Y was obtained by 1 − cosine(X, Y), which was

always positive for the exemplars considered.
7We used stratified samples in five frequency ranges of 10 bigrams each.
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When S = T = 1, the network sees disordered or displaced input bi-
grams as different entities altogether: all have orthogonal codes. On the
contrary if S = T = 0, the network sees disordered or displaced input bi-
grams as the same entity. Bigrams’ defining characteristic can thus be writ-
ten as 0 ≤ S < T ≤ 1. When S = 0 and T = 1 the network recognizes shifted
inputs as the same entity, but disordered bigrams as completely different
entities. This is the distributed analog to the localist bigrams used, for exam-
ple, in Grainger and Van Heuven (2003) and Whitney (2008), and means that
the network has learned location-invariant bigram knowledge. In contrast,
when S = 1 and T = 0, the network has learned to recognize unordered
letter pairs seen at a given location and thus encodes no information about
relative position or order of letters. Such representations violate the defining
characteristic of bigrams.

Let us finally define discriminant bigrams as those that are useful to
distinguish between anagrams. Given a set of anagrams (e.g., [“vein,”
“vine”]), a discriminant bigram (“ne”) is one that is present in at least
one anagram from the set (here in “vine”) but not in all of them (not in
“vein”).

4.4 Results. Figure 5 shows that shifting and transposing a bigram
was equally disruptive, as apparent from the fact that all bigrams sit more
or less on the diagonal. This absence of a difference holds whether bi-
grams are helpful or not for discriminating anagrams (resp., white and
black signs), for both Euclidean (marked using circles, p = 0.31 for D > 0
and p = 0.44 for D = 0) and cosine distances (marked using squares, resp.,
p = 0.28 for D > 0 and p = 0.43 for D = 0). The close-to-zero cosine mea-
sures (mean = 0.07) indicate that shifted, transposed, and reference bigram
vectors are all very much aligned in the same direction in hidden space.
The low Euclidean measures (mean = 0.27) indicate that the network as-
signs largely overlapping codes to inputs that are made of the same letter.
Taken together, these results establish that the network has not learned any
bigram knowledge.

4.5 Bigram Patterns Regressed on Constituent Letter Patterns. The
large overlap between hidden patterns obtained for different bigram trans-
forms suggests that the code for a bigram relies on the codes of its constituent
letters. Although the sigmoid activation function in the network ought to
imply that this relationship is nonlinear, we should first test for the simplest
relationship using linear regressions.

Hidden patterns were produced for 50 discriminant bigrams and 50
nondiscriminant bigrams presented at randomly selected locations and for
their constituent letters presented alone at the same locations. Multiple
linear regressions were carried out with the bigram pattern as the dependent
variable and letter patterns as explanatory variables.
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Figure 5: Assessment of the bigram knowledge learned by the network. Dis-
criminant (white) and nondiscriminant (black) bigram representations plotted
by their Euclidean (circles) and cosine (squares) coordinates in the S × T plane
(S: horizontal, T : vertical).

Distributions of R2 regression values for discriminant and nondis-
criminant bigrams are shown in Figure 6. All bigrams had high R2 val-
ues, with nondiscriminant bigrams being slightly but significantly higher
(mean = 0.85 against mean = 0.83, p < 0.01). These results suggest that a
lot of variance in bigram patterns can be explained by letter patterns in a
combination that appears to deviate only slightly from linearity.

4.6 Conclusions from Bigram Analysis. In this section, we have con-
ducted three different analyses to assess whether the network has learned
bigram knowledge. First, we showed how hidden patterns for seen and un-
seen bigrams clustered in the same way. Second, we established that the net-
work does not exhibit the defining characteristic of bigram representations,
because shifting and transposing a bigram was equally disruptive, even for
discriminant bigrams. Finally, we demonstrated that bigram patterns can be
very well approximated by a linear combination of their constituent letter
patterns. In light of these analyses, our conclusion is that the network does
not use a bigram code in order to recognize visual words, but rather that
the code is based on letter knowledge. This leaves open the question of how
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Figure 6: R2 distributions of linear regressions for bigram vectors over letter
constituent vectors (black = discriminant bigrams, white = nondiscriminant
bigrams).

information about relative letter position is factored in, which is required
for distinguishing among anagrams. We address this question in the next
section.

5 Building Up the Code: A Letter-Based and Linear Account

The previous bigram analysis suggested the possibility that any string pat-
tern can be approximated by a linear combination of letter-constituent ac-
tivity patterns. We put this idea to the test by performing linear regressions
of word patterns.

5.1 Word Patterns Regressed on Constituent Letter Patterns. Hidden
patterns were produced for 283 anagrams and 283 nonanagrams presented
at randomly selected locations and for their constituent letters presented
alone at the same locations. Multiple linear regressions were carried out
with the word pattern as the dependent variable and letter patterns as
explanatory variables. For each word, we performed a control regression
on nonconstituent letters at the same location.



266 T. Hannagan, F. Dandurand, and J. Grainger

Figure 7: Linear regressions of word vectors over letter constituent vectors
(black = anagrams, white = nonanagrams). R2 distributions.

Figure 7 shows that regressions of word vectors on their constituent
letter vectors again prove efficient (mean R2 = 0.53), nonanagrams being
better explained than anagrams (0.55 against 0.50, p < 0.01). These scores
cannot be attributed to a general overlap between hidden vectors, since
control regressions on nonconstituent letters at the same location yielded
negligible scores (mean R2 = 0.05).

Our results show that although it is less accurate, the linear type of
relationship found for bigrams also holds for words, anagrams or not.8

Taking profit of location uncertainty for any letter, such a code would in-
deed be able to produce different representations for any words, including
anagrams, while keeping exemplars of the same word similar. The slightly
(but significantly) inferior scores for anagrams, also found in bigram re-
gressions, show that for anagrams, the mapping deviates a bit more from
linearity. This is presumably used by the network to make hidden patterns
for anagrams more distinguishable from one another than exemplars of the
same word, allowing the second set of weights (input-to-output weights)
to support accurate identification.

8More generally, unreported simulations suggested that R2 scores decrease with word
length.
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Figure 8: Average DGD similarities between a word and its letters across loca-
tions.

Critical in the coding scheme described here is the overlap between
exemplars of the same letter, which implies an overlap between exemplars
of any arbitrary string, making location-invariant word recognition not
only possible but also flexible. In fact, the proximity effect in letter clusters
apparent in Figure 3 (right)—the pattern of distances between codes for
the same letter at different locations—appears closely related to the overlap
model recently proposed by Gomez, Ratcliff, and Perea (2008).

5.2 Relationship Between DGD and the Overlap Model. In the over-
lap model, letter position is not a fixed value but rather a distribution of
probabilities whose maximum coincides with the correct within-string po-
sition (e.g., in the word TIME, letter I has its position probability peak at
position 2), the model allows for uncertainty about the true position of the
letter, with decreasing, yet nonnull, probability of letters being displaced
(e.g., TMIE). According to the model, this uncertainty explains the flexible
coding observed in skilled readers.

Figure 8 shows how the similarity of hidden pattern activations in the
DGD network between some word and its constituent letters varies as a
function of location in the input array. This was computed as the average
Euclidean distance on normalized vectors of all words in the base to their
constituent letters at all possible locations.
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Figure 8 gives an idea of how much one can infer from a word pattern
about the location of its constituent letters. The curves present themselves
neither as single spikes that would be situated at the correct location (no
overlap, perfect information about location) nor constant lines across lo-
cations (perfect overlap, no information about location). Instead, for every
letter curve, the similarity increases monotonically to culminate at the cor-
rect location (e.g., the curve for letter 1 peaks at location 4) and then to
decline again monotonically. Hence, although each letter location can be
deduced accurately from a word code, locations are more easily confused
when they are close to one another.

This graph lends support to the idea that location uncertainty in the DGD
network serves precisely the same role as position uncertainty in the overlap
model: giving flexibility to the code. The uncertainty on letter locations in
any word pattern is indeed the exact counterpart of the fact that exemplars
of the same word receive similar hidden patterns and will cluster together.

But despite this close relation, the overlap model cannot explain den-
sity distributions and clustering patterns in DGD. Next we show that by
using holographic reduced representations (Plate, 1995), we can build a
distributed analog of the overlap model that meets these goals.

5.3 Holographic Overlap Coding. Holographic string encoding is a
general method to implement various orthographic schemes, for instance,
the overlap model or open bigrams, in a distributed way (Hannagan,
Dupoux, & Christophe, in press). To create an overlap representation for any
arbitrary string, each letter vector is bound to the adequate location vector
(e.g., letter vector T in word %%%TIME%%% is bound to location vector 4),
and the bindings are simply summed together. Letter and location vectors
are created at random by drawing 91 components from a centered gaussian
distribution of variance 1√

91
. Twenty-six independent letter vectors were

generated in this way, but the 10 location vectors had correlated compo-
nents to make them overlap: except for the first, each location vector li was
obtained by copying ρ = 90% randomly chosen components from the pre-
vious vector li−1, and regenerating the remaining 10%. Binding is achieved
using the circular convolution operator described below. These letter and
location bindings are then summed together, along with a common inde-
pendent vector ψ , resulting in the final holographic reduced representation
for the word.9 For example, for the word TIME presented in central location,
we have:

%%%T I ME%%% = T ⊗l4 + I ⊗l5 + M⊗l6 + E⊗l7 + 2ψ.

9Although in Plate (1995), chunked vectors were normalized in order to keep them
in the same format and allow further compositions, a simple sum is sufficient for our
purposes.
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Where li are the correlated location vectors, ψ is a vector common to all
words, and ⊗ is the circular convolution operator defined by

(X⊗Y)i =
91∑

k=1

Xk ∗ Y(i−k)mod(91).

Circular convolution is a stable operator on vector format. If two vec-
tors of same distribution are composed, the distribution is conserved. Im-
portantly, each component of the binding integrates information from all
components of both constituent vectors; information is completely dis-
tributed. Thus, by construction, holographic codes are densely distributed,
and up to a linear transformation—each vector being centered on zero
instead of 0.6 for DGD—their gaussian distribution agrees with DGD
densities.

To measure the correspondence between holographic codes and DGD
in a general way, we gathered a variety of distance conditions into
a single correlation plot. We computed the correlation between DGD
and holographic distances in five conditions: a “within-letter” condition
(e.g., %%%%A%%%%% versus %%%%%%A%%%) counting 45 distances
between a letter across all locations, a “within-string” condition (e.g.,
%%%%IME%%% versus %%%%I%E%%%%) of 105 distances between all
possible substrings obtained by deleting letters from a word, a “between-
words” condition (e.g., %%%TIME%%% versus %%%YOGI%%%) of
105 distances between distinct words, a cross-anagram condition (e.g.,
%%%SWAP%%% versus %%%WASP%%%) of 110 distances between pairs
of anagrams, and a shifted-anagram condition (e.g., %%%SWAP%%% ver-
sus %%%%SWAP%%) of 110 distances between the same anagram with a
one-location shift. This amounted to 475 distances in five conditions. The
upper left plot in Figure 9 shows cosine similarities. All similarities were
high and regularly placed along the diagonal: first, the relatively weak sim-
ilarities between words, followed by within-string similarities, and finally
high within-letter similarities as well as anagram similarities. Although we
will consider the anagram conditions in more detail, what is crucial for this
analysis is that DGD and holographic codes coincide to a rather striking
extent, with a correlation coefficient of 0.98.

We next asked whether the holographic code could reproduce the den-
sity and distance profiles presented in analysis 1. We thus sampled 100
words from the DGD training base, built their holographic codes, and com-
puted the 4950 possible distances between them. The resulting distance
distribution obtained for holographic codes is presented in Figure 9 (upper
right). This gaussian distribution has a mean 2.5 and standard deviation
2.75. It agrees with the distance distribution in DGD (see Figure 2, right) in
that both distributions are unimodal and exhibit large standard deviations.
The lower mean in the holographic case (2.5 against 4.86) arises because
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Figure 9: Tests of holographic overlap coding. (Upper left) Correlation of
holographic and DGD distances on 475 distances in five conditions. (Upper
right) Distance distributions (cf. section 1). (Lower left) S and T indices for
bigram patterns (cf. section 3). (Lower right) Letter distances across locations
(cf. section 2).

holographic vectors have a much narrower standard deviation than their
DGD counterparts (0.11 against 0.53). A less superficial difference is in the
distribution skewness, which is zero for holographic codes but negative for
DGD. This difference is due to the fact that each code in DGD is also influ-
enced by the whole training base, whereas each holographic code depends
on only its constituent letters. Probably the negative skew in DGD reflects
neighborhood and letter frequency effects, which may create the asymme-
try by isolating word vectors or shrinking their lengths, thereby increasing
the number of short distances.

We carried on with the bigram plot of section 3, measuring the extent
to which representations were bigram-like. Holographic codes were pro-
duced for a sample of 400 bigrams; S and T indices were computed for
the Euclidean and cosine distances, and averaged over 50 iterations. The
bottom-left plot in Figure 9 shows S and T indices regularly placed on
the diagonal, as expected from a letter-based code. S and T indices were
indistinguishable in both the Euclidean (mean S = 0.31, mean T = 0.31)
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and cosine (mean S = 0.10, mean T = 0.10) case. Bigram points were much
more tightly clustered compared to DGD, reflecting the absence of vector
length variation in the former but not the latter.

Finally, proceeding to the letter analysis, we reproduced the distances
between letters seen at different locations that were presented in analysis
2. Distances were averaged over all letters and 50 iterations. Holographic
codes are in excellent agreement with DGD. The plot in Figure 9 on the right
shows a clear proximity effect, distances increasing with the deviation from
the first diagonal. The centrality effect reported in DGD—shorter distances
in the center than in the edge—was absent in holographic codes. Again, in
DGD, this effect was attributed to differences in occurrence over locations
during training and thus cannot be expected to arise in the holographic
codes.

In summary, Figure 9 shows a remarkable correspondence between the
holographic overlap model and DGD on a number of important criteria:

� Distance patterns within and between words, including anagrams
� Density and overlap distributions
� Letter clusters and the proximity effect

Because it does not take into account the influence of location on vector
length, holographic overlap coding cannot reproduce the centrality effect
for letters that was illustrated in Figure 3. However, we note that these codes
naturally allow for the introduction of weights. These could modulate the
importance of any given letter in the string according to location, letter fre-
quency, or letter-positional neighborhood. One might also ask how, despite
the absence of such information and a fortiori of any knowledge about a
lexicon, holographic codes can still be in good agreement with DGD on the
two anagram conditions (Figure 9, upper left plot, diamonds and cross). But
closer inspection reveals that distances between pairs of anagrams (resp.
between shifted anagrams) are slightly but systematically overestimated
(resp. underestimated) by holographic codes. This is reflected in Figure 9
(upper right) in that all crosses (resp. diamonds) lie above (resp. below) the
diagonal.

In fact, these deviations of DGD similarities for anagrams can inform
us on how the network manages to know whether it has been presented
with a shifted exemplar of a given anagram or with exemplars from other
anagrams in the same set. Although quite close, mean similarities across
anagrams are indeed significantly lower than for shifted anagrams (mean
across = 0.96, mean shifted = 0.97, p < 0.0001). Significant differences still
arise with a shift of two locations (mean across = 0.96, mean shifted = 0.97,
p < 0.001), but the direction is inverted with a three-location shift (mean
across = 0.94, mean shifted = 0.96, p < 0.0001). It would thus appear that
using its hidden-to-output set of weights, the network can take profit of
minute differences in activation patterns in order to sort out anagrams.
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Figure 10: Connection weights between input and hidden units in the DGD
network (white: small; black: large)

The coherent picture emerging is that the network has learned a set of
connection weights that essentially stores knowledge about semi-location-
invariant letters, including letter location frequencies. On presentation of an
input, the knowledge is combined to produce a unique code for any string of
letters. This combination is not linear, and it integrates information about the
whole training base. It is thus quite surprising that the code can be acutely
approximated with a simple sum of normally distributed and correlated
vectors. More questions arise from the interpretation one should give to
such vectors, considering that in the network, hidden activity patterns for
any word are built not from the activity patterns of letter constituents but
from a localist input vector and a matrix of connection weights.

5.4 Broken Symmetries and Holographic Coding. In order to under-
stand why this correspondence exists, it is necessary to go beyond hidden
patterns of activity. The network knowledge that produces hidden acti-
vation patterns is contained in the connection matrix between input and
hidden units, presented in Figure 10.

Figure 10 suggests that network weights follow the exact same symme-
try that the network was trained to achieve on input-output pairs: indeed,
weight values appear to be translated every 26 input units. It thus seems
that during training, the backpropagation algorithm drives the network
onto a trajectory in weight space that converges close to the sufficient condi-
tions described in the generalized group invariance theorem (Shawe-Taylor,
1993). Simply stated and in our case, the theorem holds that translation
symmetry on network weights is sufficient to ensure location invariance
in patterns. Notice, however, that perfect weight symmetry would require
circularly connected input and hidden layers, and would necessarily pro-
duce identical activity patterns for anagrams.10 The former is not true in

10More precisely the requirement is of a closed symmetry group, such as, for example,
translation when input and hidden layers are circularly connected
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DGD, and the network is precisely trained to avoid the latter. For these two
reasons, weight patterns in Figure 10 are not exactly translation invariant
but appear sometimes lighter or darker from left to right, showing that the
symmetry on network weights is broken.

Figure 10 also provides some clues to understand the correspondence
we have found: it is really a correspondence between holographic codes
and net inputs in the network hidden layer. Recall that since the DGD
network uses binary inputs, upon presentation of a word, the net input
to any hidden unit is only the sum of four active connection weights (in
Figure 10, four points lying on the same horizontal line). Similarly the net
input to all hidden units (hereafter, the hidden net input) on presentation
of a single letter at a given location is simply a column in Figure 10. It
is this column in Figure 10 that corresponds to a letter-location binding
vector in the holographic code. Now the meaning of the—lightly—broken
symmetry on weights is that weight columns for any letters are obtained
by the same transformation—for instance, the transformation to get from
column A1 to column A2 is roughly the same as from column B1 to column
B2. This is well captured by the binding of letter vectors (e.g., A and B) to
location vectors (e.g., 1 and 2). The extent to which the symmetry is broken
in network weights is reflected in the overlap between location vectors—
the ρ parameter. Finally, the hidden net input for any letter string is simply
obtained by summing the adequate columns in Figure 10, which coincides
exactly with the sum of vectors in holographic coding.

However, net inputs are only half of what makes a hidden activation
pattern—the other half being the sigmoid activation function, which is
beyond the scope of these holographic codes. It thus appears that looking
at distances between hidden net inputs is a good proxy to characterizing
distances between hidden activations, which certainly did not have to be
true considering the nonlinearity of the sigmoid function. One possible
explanation to this, suggested by the density distribution in Figure 1 (left),
is that net inputs are generally close to zero on both sides, which keeps
activation patterns close to the middle of the activation range, thus limiting
the distortion of distances by the sigmoid (when net inputs are close to
zero, the sigmoid function is close to linear). Inspection of the weight matrix
indeed shows that weights follow a normal distribution that is centered on
zero (mean = 0.02), although with a large standard deviation (SD = 1.95).

What might perhaps be surprising in this account is that in the end,
holographic vectors correspond to weight vectors, or sum thereof, but not
to activation vectors, as would have been expected. We find this particu-
larly satisfying considering how holographic reduced representations blur
the traditional distinction between connection weights and unit activations.
Indeed, these codes were designed precisely so as to reduce associations be-
tween representations (traditionally embodied in connection weight matri-
ces) to representations (traditionally an activation vector), so that arbitrary
nested associations could be built (Plate, 1995).
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6 General Discussion

The main goal of this letter was to understand the string encoding strat-
egy developed by the DGD network for solving a location-invariant word
recognition task.

6.1 Understanding the Network. In analysis 1, we found that DGD
used densely distributed word representations in order to achieve location
invariance. Analysis 2 showed that letter vectors cluster together by loca-
tion, which suggested that the network had learned semi-location-invariant
letter representations. Analysis 3 falsified the bigram alternative and sug-
gested the possibility that any string vector could be well approximated by
a simple linear combination of its letter constituent vectors. This was con-
firmed in analysis 4, where we also found parallels between semi-location-
invariant letter representations and the overlap model. Finally, analysis 5
uncovered a remarkable correspondence between the kind of linear map-
ping achieved by holographic overlap coding and DGD, with a correlation
score of 0.99 showing that both generate virtually the same topology on
word vectors. We also argued that this correspondence is fundamentally
about holographic representations and hidden net inputs and that it arises
from a broken translation symmetry in network weights.

Critical in this account is the broken translation symmetry, as it reveals
the deep relationship that exists between proximity effects and anagrams.
Indeed a network with perfect translation symmetry on its weights would
assign exactly the same hidden pattern to exemplars of the same word,
but also to anagrams of this word. This network would fail to recognize
visual words. On the other hand, a network without translation symmetry
would assign orthogonal patterns to anagrams but also to exemplars of the
same word. Such a network would not be location invariant. The network
that takes the best of both worlds has broken translation symmetry. This
network can assign different patterns to anagrams but also assigns very
similar patterns to exemplars of the same word. The symmetry appears to
be further broken in such a way as to make anagram patterns deviate from
a linear mapping (as Figure 7 shows) and as to allow for exemplars of a pair
to be distinguished based on distance differences (as Figure 9, upper left,
suggests).

Nevertheless one might ask how relevant these insights really are for vi-
sual word recognition. How does this correspondence help us understand
the network? How general are these results? How plausible is the DGD net-
work from the biological and behavioral viewpoints? These are legitimate
questions, and in the following sections, we attempt to answer them in this
order.

6.2 Working with a Code Rather Than a Network. From a purely
practical point of view, the holographic correspondence that is supported
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by this broken translation symmetry has a significant impact. It tells us
that as far as word distances are concerned, it is actually not necessary to
produce a neural network of 1300 or more sigmoid units and 100,000 or
more connections through painstakingly long training. For all intents and
purposes, holographic overlap coding makes the same predictions almost
instantly using 261 vectors of dimension 91. This would be particularly
useful for research in letter position coding, which has recently been using
such distances almost exclusively (Grainger et al., 2006; Gomez et al., 2008;
Davis & Bowers, 2006; Whitney, in press; Guerrera & Forster, 2008; see
Davis, 2010, for an exception).

Apart from the practical advantage, the correspondence can also explain
some aspects of the network behavior in a new way. For instance, in holo-
graphic overlap coding, the similarity between letter exemplars comes from
the overlap between location vectors and, critically the fact that circular con-
volution respects similarities:

∀i, j, X,

cos(li , l j ) = cos(X ⊗ li , X ⊗ l j ).

This property and the built-in similarities between location vectors ac-
count for clustering and proximity effects. Perhaps unintuitively, the inferior
similarity between exemplars of different letters, even at the same location,
involves exactly the same property:

∀i, j, X, Y

cos(X ⊗ li , Y ⊗ l j ) ≤ cos(X ⊗ li , Y ⊗ li )

= cos(X, Y)

Using the properties of holographic vectors, we could derive other prop-
erties of the network, such as the absence of a difference between S and T
indices. Indeed, this amounts to establishing the following identity:

∀i, X, Y

cos(X ⊗ li + Y ⊗ li+1, Y ⊗ li + X ⊗ li+1)

= cos(X ⊗ li + Y ⊗ li+1, X ⊗ li+1 + Y ⊗ li+2).

We leave the proof of this identity to future research, along with the inter-
pretation of the ψ vector.

This correspondence is relevant to explain both transposition and relative
priming effects reported by Dandurand et al. (2010). In holographic overlap
coding, interchanging the positions of two letters does not result in a loss
of information on these letters like a double substitution would, because
location vectors are correlated. However because close location vectors are
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more correlated, the disruption is minimal with central contiguous transpo-
sitions. Dandurand et al. (2010) indeed reported very strong transposition
priming, with central and contiguous transposition of a single pair of letters
being almost as effective as identity primes.

Similarly, deleting a letter in a string not only deprives the holographic
code of the corresponding information, but also shifts to the left the loca-
tion vectors to which letter vectors are bound. Again, since location vectors
are correlated, we see that the resulting hidden pattern will still bear some
similarity with the original, possibly less so than in the case of single trans-
positions because some letter information has been purely lost. Dandurand
et al. (2010) also reported relative position priming effects in the network,
although smaller than in the case of transpositions.

These examples show that thinking of the network in terms of holo-
graphic codes can shed some light on its behavior. It also holds the promise
to do so with formal proofs, since any of these effects can be translated as
an equation involving well-defined vectors and operators.

6.3 Generality of the Results. An important question concerns the ex-
tent to which the correspondence holds, and there is no reason to assume
that it must be restricted to the visual word domain. Presumably any vi-
sual recognition task with similar statistics in the training environment
that uses localist, feature-coded inputs and localist outputs would yield
the same results. It is easy to devise holographic representations for any
such feature-coded visual input, exactly as in the case of words. In fact, at
first sight, using localist inputs would appear to be the critical component
of this correspondence. This is because localist inputs do ensure that each
hidden unit will have a linear combination of exactly these features as a net
input, which is well mirrored in the holographic code in that each vector
for a string obtains exclusively from the vectors of its letters (as well as a
common ψ code). However, it is unclear at this point whether a transition
to fully distributed inputs would actually make holographic codes irrele-
vant, or only the letter-based and overlapping scheme. Indeed, holographic
coding is not committed to any scheme, and using distributed inputs might
simply mean performing a larger weighted sum of holographic vectors to
generate any given string code. Rather, what appears to be mandatory for
both localist and distributed inputs is that the net input distribution re-
mains centered on zero so that the (linear) chunking operator can emulate
the (nonlinear) activation function. This would appear to be a requirement
on the statistics of the training base as much as on input-output format.

Given this localist input-output format, how much does this correspon-
dence owe to the location-invariant nature of the task? In DGD, the re-
quirement for location-invariant recognition forces the network to use very
similar weights for any given letter at any location. These agree very well
with holographic letter and location bindings, from which every string code
is built. As noted previously, there are at least two reasons why DGD uses
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semi-location-invariant rather than fully location-invariant representations.
First, we have seen that symmetry is broken due to the noncircular layer
topology. Second, even with circularly connected layers, the existence of
anagrams still forces the network to maintain some location specificity in
letter representations. Without anagrams, there would be no need to dis-
tinguish between locations since every word would be uniquely defined
by its constituent letters, whatever their locations. On the contrary, remov-
ing the location-invariant constraint from the recognition task would result
in purely location-specific letter representations. It would seem that holo-
graphic coding can accommodate the whole spectrum of invariance by
adjusting the correlation parameter ρ between location vectors from zero
(to cover the fully location-specific case) to a value of one (for the fully
location-invariant case).

Finally given localist inputs-outputs and a location-invariance task, one
might wonder whether our results are due to this particular network struc-
ture. At first sight, it might appear that the correspondence is limited to
networks with a single hidden layer. Indeed, although holographic letter
vectors correspond to weight columns, the holographic code for a given
word is designed to approximate activity patterns in the hidden layer. But
this is not taking into account the intrinsic compositional abilities of the
code: holographic representations can be combined over and over again
in arbitrarily deep structures.11 It is conceivable that combinations at each
level of the holographic structure could correspond to representations in
each layer of the network. In this case, because by definition holographic
codes have a fixed format, the correspondence must be limited to networks
with layers of equal size and in which the density of representations is con-
stant. The idea that backpropagation networks could be used for the same
purpose as holographic representations is not completely new. Pollack’s
(1990) RAAM network is a feedforward autoencoder network that achieves
the same goal as holographic representations—representing and accessing
compositional structures. There are nevertheless major differences between
RAAM and DGD, especially the fact that in the former, hidden representa-
tions come to serve as inputs during training.

In summary, our results might hold across various (but not all) input-
output formats, training environments, and network structures. The main
limitations appear to be on the distribution of net inputs, (which has to
be centered on zero), the connectivity (which has to be feedforward), and
the size of hidden layers (which has to remain constant). In these condi-
tions, while the encoding scheme might be modified, the holographic corre-
spondence would be expected to apply even for arbitrarily deep hierarchi-
cal networks, trained on another visual domain with possibly distributed
input-outputs.

11The normalized sum must then be used as the chunking operator.
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6.4 Plausibility of the DGD Network. From a behavioral point of view,
there are some limitations of DGD that prevent one from carrying out more
thorough comparisons with human experimental results. First, its base is
restricted to four-letter words, which seriously constrains the distance com-
parisons that can be made and also questions the neighborhood effects
induced by this nonrepresentative sample of the human lexicon. Second,
letter visibility was assumed to be perfect across all locations, which dis-
agrees with experimental results (Stevens & Grainger, 2003). In order to
overcome these limitations, we have carried out new simulations using
a larger training base of seven-letter words and introducing realistic let-
ter visibility patterns in network inputs. This study will be presented in a
forthcoming paper featuring more extensive comparisons between network
distances and human priming. In particular, this will allow the assessment
of network performances with respect to some masked orthographic prim-
ing results where the overlapping code we have described would be ex-
pected to make incorrect predictions. One example is the observed absence
of priming when primes are formed of a subset of letters from the target,
but the order of some of the letters is changed (Peressotti & Grainger, 1999;
Grainger et al., 2006).12

Another behavioral concern is that for backpropagation to operate ad-
equately, supervision must be provided, and every word requires several
passes into the training base. But although single-shot learning is a desirable
property in spoken language learning, where it is known that infants can
learn words after one unique exposure (Mayor & Plunkett, 2010), it is un-
clear to what extent the same holds during reading acquisition. Similarly the
argument for unsupervised learning is much more relevant in other areas of
language than in string encoding. During reading acquisition, children are
explicitly taught how to read words and are given constant visual and au-
ditory feedback in order to do so. At the same time, some researchers have
argued that this supervised form of learning using a training base would
be compatible with a vision of the hippocampus and the neocortex as com-
plementary learning systems (McClelland, McNaughton, & O’Reilly, 1995),
the former repeatedly replaying recent patterns to the latter where they get
consolidated. Hence, the supervision and lack of incrementality, although
presumably inappropriate in their current forms, may not be critical flaws
of the backpropagation algorithm and of the model we considered.

From a biological point of view, backpropagation has also been deemed
implausible because it requires calculating input-output errors and propa-
gating them backward in a very precise way (Crick, 1989). At the same time,
there is a well-localized region achieving string encoding in the brain, the
visual word form area (VWFA; Cohen et al., 2000), which, contrary to the
DGD network, has both feedforward and feedback connectivity as well as

12We thank Carol Whitney for pointing this out.
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limited overlapping receptive fields. However, it is known that backpropa-
gation in a feedforward network is asymptotically equivalent to contrastive
Hebbian learning when weak feedback connections are added (Xie & Seung,
2003). Hence, ultimately the one implausible feature of the DGD network
might well be the absence of any constraint on receptive fields. Interestingly
it has been argued that because it supports the internal organization of the
VWFA in a hierarchy of units of increasing complexity (Vinckier et al., 2007),
this constraint could be sufficient to produce units that activate for specific
open bigrams (Dehaene, Cohen, Sigman, & Vinckier, 2005), as observed, for
instance, in Binder, Medler, Westbury, Liebenthal, and Buchanan (2006). We
are currently investigating this hypothesis using a hierarchical framework
with limited receptive fields inspired from the Visnet model (Wallis & Rolls,
1997).

In summary, behavioral plausibility in the DGD network is limited
mostly by its simplifying assumptions of perfect and homogeneous input
visibility and by its four-letter-word lexicon. We have argued that biological
plausibility might not be hindered by the absence of feedback or the use of
backpropagation, since they might in fact cancel out, but by the assumption
of full connectivity between layers. These simplifying assumptions were
justified by the modeling approach presented in Dandurand et al. (2010),
and improving on them is not expected to jeopardize the holographic cor-
respondence (which can accommodate weighted letter inputs and absorb
varying proportions of anagrams in the ρ parameter). However, these mod-
ifications might trigger a change of granularity in the scheme used by the
network, possibly toward using letter combinations as building blocks for
visual word codes.

7 Conclusion

The DGD model is perhaps the simplest string encoding network able to
achieve location-invariant word recognition. Understanding how it works
was the purpose of this letter and a prerequisite to the study of more
sophisticated variants. We have been able to establish that the network
does not solve location invariance by extracting knowledge about letter
combinations from the language environment. Rather, it combines semi-
location-invariant letter representations to assign exemplars of the same
input word to the same region of hidden layer space and exemplars of
different input words to different regions.

Our results were obtained partly by standard data analysis techniques,
such as clustering and linear regressions, and partly by introducing new
tools, such as transformation indices to characterize bigram knowledge and
holographic reduced representations to emulate hidden patterns. In the
process, we have uncovered a surprisingly acute empirical correspondence
between word distances in the network and in holographic overlap coding.
The correspondence stems from a slightly broken translation symmetry
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in connection weights. We have argued that the correspondence might
hold beyond this particular model for a certain family of networks (fully
feedforward and hierarchical, with equal layer format) and for a variety of
input-output representations.

Future research could investigate how backpropagation achieves con-
vergence to this solution and disentangle its precise relation to the
group-invariance theorem. These insights also pave the way to the study
of other network variants that can be more thoroughly compared to be-
havioral results, bringing us closer to understanding human visual word
recognition.

Appendix: Silhouette Fitness Score

Here we recall the silhouette cluster fitness definition (Kaufman &
Rousseeuw, 1990). Let us first define the average distance between a point
i and cluster X as the distance between i and all points in cluster X, that is:

di,X = avg j∈X(d(i, j)).

Let us also note the minimum distance between i and any cluster X as

mi = min
X

{di,X}.

The fitness of cluster C is given by

f(C) = avgi∈C
mi − di,C

max{mi , di,C } . (A.1)

When all elements in C could equally well have been classified in another
cluster, the numerator is null and the fitness score is zero. On the contrary,
when all points in C are superimposed (and not all points are in C), we
have an ideally defined cluster, and this fitness score returns 1.
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